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INTRODUCTION

We consider an asynchronous communication network, modelled
by a simple undirected graph, 6 = (V,E). The nodes V maodel the
communication processors of the network and the edges E model the
bidirectional communication channels of the network. Each node
receives and transmits messages on its adjacent edges and
performs local computations. The sequence of messages sent in a
given direction on an edge is received error free by the opposite
node in first in first out (FIFO) order with finite but
unpredictable delays. These messages are queued at the receiving
node until the processor is ready to process them.

In a communication netwark, the amount af communication
-required to perform some function is often more significant than
the amount of processing required, so the complexity of a
distributed algorithm is appropriately measured in terms of the
total number of bits communicated over all edges. Here, for
simplicity, we simply count the number of elementary messages
sent over all edges, where an elementary message contains at most
some small fixed set of parameters, such as the size of a set of
nodes or the length of a path., Thus the number of bits in an
elementary message can grow at most logarithmically with the size
of the network, The time complexity of an algorithm is the
maximum poassible number of time units from the initiation to
completion of the algorithm, assuming that the processing delay

is negligible and that the maximum delay on an edge is one time
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unit., The maximum delav on an edge is the maximum intervail, e
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edge. We consider, however, only algorithms that contain no

knowledge of edge delays; ie. algorithms that are event driven

with no time outs.

THE SHORTEST FATH FROELEM

Given a graph (V,E) and given a particular root node, r,
find a shortest path tree, using unit edge weights, from r to all
other nodes. That is, the path from r to any other given node n X
in the tree must contain the minimum number of edges over all

paths from r to n in the original graph. This problem is often .

called the minimum hop problem [11, [21, and distributed @}
solutions of this praoblem form building blocks for many network .;§

l..\ .
praotocols. o

A distributed shortest path algorithm is an algorithm for a fﬁ
communication network to solve the shortest path problem. fi
Initially, the processor at each node is unaware of the network
topology but is aware of its adjacent edges, has a copvy of the
algorithm, and knows whether or not it is the root. The root ix
node starts the algorithm, and the other nodes join in when they
receive messages. When the algorithm stops, a shortegt path tree -
has been identified in the sense that each node knows which
adjacent edges are in the tree and which one of those adjacent

tree edges (called the inedge) is on the path to the root. Each
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node also knows its lsavel, ie. the number of edges on the nath to

the root and the root node, at l=ast, knows that the aigorithm is
complete. Note that from a communication standpoint, it is not
necessary far a node to know the shortest path to the root, since
it can send a message on its inedge, and the receiving node can
forward it on its inedge, and so forth to the root. Similarly,
the root does nat have ta knaw the entire tree and can broadcast
a message to all nodes by sending it on all adjacent =dges. Each
node can then forward the message on all tree edges other than
the inedge. The nodes on the path to the root from a given node
will be referred to as ancestors of the node, and the nodes for
which a given node is an ancestor are the descendants of that

node.

SIMFLE SHORTEST FATH ALGORITHMS

Note that the shartest path problem with egqual edge weights
is trivially simple in a synchronous network where all edge
delays are the same. The root simply sends a message over each
of its edges telling the neighboring nodes that they are
neighbaors of the root. Each such neighbor sets its level to 1
and sets the edge on which the message was received as the
inedge. Each of these nodes immediately sends aut a message on
all other edges telling the recipients that they are neighbors of
a level 1 node. In general, when a node receives a message thah
it is the neighbor of a level i node, then the node (if naot at

level i ar less itself) sets its level to i+l, sets its inedge to
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a level i+l node. EBecause of the uniform delay, 2ach node2 hears
its first message from a node at the next lower level and thus
sets its level and inedge correctly. When a given node (other
than the root) has heard a message or acknowledgement from each
neighbor, it send an acknowledgement on its inedge, informing its
immediate ancestor both that that edge is in the tree and that
the algorithm is complete for all descendants of the given node.
Thus :he acknowledgements ara collected from the leaves to the
root indicating completion of the algorithm. It is easy to see
that at most two messages are sent over each edge, one in each
direction, yielding a communication complexity of O(E) and a time
complexity of O(V) where E=|E| and V=|V].

Note that any shortest path algorithm requires at least one
message to be sent on fach edge. To see this, suppose that an
algorithm failed to send a message over some given adge of some
network. Consider modifying the network to contain one ar more
nodes at the middle of the given edge. These naodes would receive
no messages with the given algorithm and thus could not determine
their level. Similarly any algorithm requires at least as many
time units as the level of the highest level node, which could be
V~1 in the worst case. Thus any shortest path algarithm requires
at least a communication complexity of O(E) and a time complexity
of 0{V).

For an asynchronous network with unknown edge delavse, the

above algorithm doesn’'t work since a node might near 1ts first
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message via a longer path than the shortest path.
ard mcst obvious solution o thie problem is a distributed form
ot the Bellman algoarithm. This algorithm aperatzs with the same
messages as the previous algorithm except that if a node, aftter
setting its level, receives a subsequent message from a node on a
shorter path, then that node changes its level and inedge, and
sends another message at its reduced level to all ather
neighbors. This algorithm, generalized tao arbitrary edge
lengths, was in essence used in the original Arpanet routing
algorithm C3]. From a practical point of view, the distributed
Bellman algorithm is simple and rarely requires more than a few
messages per edge. Since any distributed shortest path algorithm
requires at least one message per edge, the search for better
algorithms in the communication complexity sense is primarily of
theoretical interest.

Another abvious distributed shortest path algorithm, and the
basis for our new algorithm, is what we call the basic

coordinated shortest path algorithm. This algorithm works in

successive iterations, with the beqginning of each iteration
synchronized by the root node. Initially, the root sends a
message to each neighbor indicating the first iteration of the
algorithm. Each recipient marks its level as 1, marks the adqge
on which the message was received as the inedge, and sends an
acknowledgement back to the root an the inedge. When the root
receives an acknpowladgement fram each neighbor., 1t starts
iteration 2 by sending an iteration 2 message to each neighbor.

Each neighbar then forwards the message to @2ach of its neighbors
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other than the root.

In general, aft=sr the i—ith iteration is complste, the
Shortest path tree has been formed out to lavel i-—-1. The root
then broadcasts the message for iteration I cout on this tr=ze and
2ach node at level less than i—-1 will rebrnadcast the message to
its immediate descendants and so forth out to level i-1 (see
figure 1). The nodes at level i-1 rebroadcast the message over
all edges other than the inedge (or optionally over all =dges not
already known to be at lower level than i). Each node, if it
first receives a message during iteration i, sets its level at i,
sets its inedge to the edge on which the first such message is
received, and sends an acknowladgement (ack) on this edge. In
addition, for each subsequent message at iteration i or above
that the node receives on an edge other than this inedge, the
node returns a negative acknowledgement (nak? on that edge, thus
informing the sender that the given edge is not in the shortest
path tree. Each node at level i-1, after receiving an ack or nak
to each iteration i message sent, sends an ack on its inedge,
including the number of acks that it received. Each node at
lower level, after receiving an ack on each outgoing tree edge,
sums the numbers accompanying these acks, thus calculating its
number of level i descendants. Each non-root node sends an ack
with this sum on its inedge. The rnot node terminates the
algorithm if this sum (i.e. the total number of level i nodes) is
zero, and otherwise starts iteratian i+l.

To analyze the algorithm’'s complexity, note that each

broadcast message is accompanied by exactly one ack ar nak in the
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opposite direction over the same edge. Each naods sands at most

i

U]

on2 ack per iteration. Each node alsc sencs at most one nack

]

aver each adjacent edge anot in the shortest path trze, Thus,
letting L be the number of iteratians,.the total number of acks
is at most 2E+LV, and the total number of all kinds of messages
is at most 4E+ZLYV or 0(VZ). We can identify the term 2LV as the
cost of synchronizing the algarithm. The time reguired tn

synchronize the ith

iteration is 2i, and thus the time complexity

for synchronization (and thus for the entire algorithm) is O(Lz)
-~

= O(V=). If one considers a simple line network with the root at

one end, one sees clearly how inefficient this algorithm is.

FREVICUS WORK ON DISTRIBUTED SHORTEST FATH ALGORITHMS

Subsequent work on distributed shortest path algorithms has
concentrated on reducing the cost of synchronization from that of
the coordinated algorithm. 0One approach, taken by Gallagesr [11]
and Frederickson [4], processes a group of levels at a time,
svnchronizing back to the root only once for sach groug. In the
algorithm af [41, each group consists of V//E levels. The
dizstributed Bellman algorithm is used within a group and the
bagsic cnordinated algorithm is used between groups. This leads
to a communication and time complexity of D(VJE), which ranges
from O(Vl's) for very sparse graphs to D(UE) for very dense
graphs. Another approach, taken by Awerbuch [5]1, was based on
constructing a subgraph on which to perform the svnchranization.

This led to a communication complexity of O(VE) and a time
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The new algorithm to be described 1s similar tao that of [1]

and (41 in that it is based on the basic coordinated algorithm,
synchronizing only between successive groups of nodes. The
differance is that here the number of levels processed in each
Jroup is a function of the number of nodes in that group. We
shall see thaf the communication complexity of the resulting
algorithm is 0(vi*®+E) and the time complexity is owi-%),

The algorithm exercised by the root node depends on V, which
is first computed as follow. First, the root broadcasts a
message to all of its neighbors. Each node, upon receiving the
message for the first time, sets its inedge to the edge on which
the message is first heard and broadcasts the message to all of
its other neighbors. The set of inedges so formed constitutes a
spanning tree of the graph. Each =dge also sends a nak on each
2dge other than the inedge on which the message is first
received. The leaves of the spanning tree (other than the root)
are identified by the receipt of naks on each adjacent edge other
than the inedge. Each leat node then sends a report message on
its inedqge reporting that it is a single node. Each other node,
after hearing either a nak or a report from =sach adjacent edge
other than the inedge, adds the number in each report of nodes,

and adds ane far itself. The non—-root nodes report this number

tack on their inedgez, whereas for the root, this number is the ﬁh
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toral numbar of nodes V in the network. The root then broadcasts

ne number of nodes angd 2dges owver the spanning tree, and an

i

acknowledgement i1s collected back to the root starting at the
l=2aves.

At this point, the root starts the algorithm proper. The
naminal number of levels to be processed in each iteration is
LVO‘EJ, where lx] means the integer part of x. The circumstances
under which the actual number of levels processed in an iteration
differs +rom this nominal value will be discussed later.
Initially the root uses the basic coordinated algarithm to
construct a shortest path tree out to this desired number of
levels. At the end of this and each subsequent iteration, a
shortest path tree has been constructed out to some given level
2. The root then broadcasts a "global" message out to all of the
nodes at level 2 instructing them collectively to extend the
shortest path tree over some subsequent group of levels. The
nodes at level £ are called synch nodes for this new iteraticon of
the algorithm. Each synch node is responsible for coordinating
the search for nodes whose shortest path to the roct pesses
through that synch node {(ie. for finding its own descendants in
the expanded shortest path treel). Essentially =ach svnch node
applies the basic coordinated algorithm (regarding itself as the
raoaot), exploring the number of levels in the new group. Figure 2
illustratezs this process, showing the beginning of the iteration
with a global broadcast from thes root to all the synch nodes,
then showing the individual local cycles of each synch node in

exploring subsequent levels, and finally showing the

it

ynch nodes




wropagating a global acknowledgement, as in the basic coordinated
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tructure, du=2 to the fact that

T

ne diffarent synch nodes. Thus the laocl tress grown Dy soma
syncit nodes may progress quickly, while others progress slowly.
In this case, a node can be seized by a guickly growing local
tree, using a path long=r than that through some other svynch
node, A slower tree grown by some other synch node will then
eventually reach the given node and provide a shorter path to the
root. An impartant property of the algorithm is that a node
moves from one local tree to another only when its path length to
the root is decreased. Thus a node can never join the same tree
more than once, and the number of times a node can change local
trees is upper bounded both by the depth of the local tress and
by the number ot synch nodes.

Figure 3 illustratese the process of synch nodes growing
local trees and of a node first joining one local tree and then
another. This figure indicates a new complication to be
considered. It i3 possible faor a quickly growing lacal tree from
one synch node to have processed many more levels than some
slowar tree, and because of this, a node that moves trom the
gquick tree to the slow tree mayv have many descendants 1n the fast
tree, all of which will have to change trees. Thus many axtra
messages can be generated by a single change, and several
conplicating factors must be introduced into the algorithm fo

fimit this message growth.
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First, =2ach node, on the cycl: ather ioining A local tree,
must send out messages on each adjacent sdge. Thus if & node has
vary high degr=ze and also changss trees often, these adiacent
edge messages dominate the communication complexity for the
entire algorithm. This problem is cured by freezing the growth
of a local tree whenever it seizes a node of very high degree.

In a manner tao be described rmraxt, this causes some global
synchronization between the local trees, and the frozen tree
remains frozen until it becomes clear that the node of high
degree is in fact on the correct local tree. The appropriate
threshold of node degree to cause this freezing turns out to be
Yo 4,

Recall that the number of levels that each synch node
attempts to process is LVO'ZJ. Each synch node, at its own
speed, uses the coordinated algorithm to construct its own local
shortest path tree, omitting nodes that already have shorter or
equally short paths through other synch nodes. This construction
ceases when one of the three following conditions occcurs: 1) the
number of levels processed reaches the attempted depth LVD'EJ; 2)
the tree is frozen at some smaller depth by seizing a node of
degree greater than VQ'4; and J) the tree finds no new nodes at

some level before reaching the attempted depth. We refer to the

trees and synch nodes for cases 1,2, and T above as active,

Each synch node, after completing 1ts local tree as above,

sends a global ack back on its inedge. If there are +roczen
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trzes, however, a shartest path tree is not fully constructed out

to th2 attemptad depth of the nev group. In this case, we regard
th=2 Jjust complated process of designating the synch nodes,

constructing the local trees as above, and reporting back to the

| TRE Il N

root as a sub-iteration. The root determines (from the
information reported back) the smallest level at which some tree
bacame frozen. We are assured that the shaortest path tree is
completely known out to that level, and therefore the tree or o
trees fraozen at that level can be unfrozen. The root then starts
a new sub-iteration, using the same synch nodes as before and
restarting the growth of those trees that had been frozen at that -
lowest level. A svnch node that is frozen at some higher level
checks to see if it is still frozen (ie. the high degree node
might have been seized by another tree). If so, it immediately ;
sends an ack back to its inedge, and if not, it continues growing
its tree. Each synch node that is unfrozen in this new sub- é
iteration continues to grow its tree until again one of the three -
~

conditions above occurs.

After some number of sub-iterations, the root will find that
there ar=s no more frozen trees and that the global
shartest path tree has been extended by the attempted LVQ'EJ
levels. At this point, the final complicating factor in the
algorithm occurs. If the final shortest path tree has a large
number of levels with few nodes at sach level, then the global
synchronizing required between iterations will still dominate the
communication complexity. On the other hand, in this situation,

there will be relatively few synchronizing nodes at each
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........

e o . A I A R R N . . A R R S T SR AT SRR TR TR
- wlhescnlho: ol i whunrhmelunioibumivielinfusinsiontsnhantcshosbunt ———— doeclsnlt el 2 2=




L oy

T ‘.l' . 'L! N !. 4 R l l .-l I. . ' I. i RS P M i S Y PR BRSNS Tt S S At

iteration, and therefare relatively few opportunities for nodes
to change lavels. In this cas=, it is advantagsous to increase

the number of levels in a group to [v0-4]. We describe the

conditions for this increase more pgrecissly afther describing more

of the details of the algorithm.

DETAILED DESCRIPTION AND COMFLEXITY ANALYSIS

The actual algorithm is contained in the appendix. In this
section we give some of the implementation details and describe
some of the properties of the algorithm pursuant to calculating
its communication complexity. There are only four types of
messages used in the algorithm proper (ie. after the calculation
of V) - glabal broadcasts, global acks, local broadcasts, and
local acks. The global broadcasts are used at the beginning of
each sub-iteration and are propagated from the root out on the
currently formed part of the shortest path tree. These broadcast
messages narmally carry three parameters—--the level of the synch

nodes, and the initial and desired final levels for the sub-

iteration. When a synch node has completed its task (by becoming
frozen, inactive, or processing out to the desired level), it
sends a global ack back on its inedge, and when a node at a lower
level receives global acks from each of its immediate

descendants, it forwards the global ack on its inedge. Each

global ack contains two parameters. The first iz the minimum
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level at which fre2ezing occured, minimized over the synch nodes
that are descendants of the node sending the global ack, and the
second is the number cof descendant synch nodes that are active or
frozen.

When the root receives these glabal acks {from each neighbor,
the root knows whether freezing occured and the minimum level of
such freezing. I+ freezing occured at some level lower than the
desired level of the sub-iteration, then the root starts another
sub-iteration with the same synch nodes and with a starting level
equal to the minimum freezing level plus 1 (since the shaortest
path tree is correctly constructed out to the minimum freezing
level). I¥f the gsub-iteration has completed the shortest path
tree out to the desired level of LVO'EJ beyond the synch nodes,
then the raot node starts a special sub—-iteration, using the same
synch nodes and covering only a single level, one beyond the
previous level. If the number of active synchs at the end of
this special sub-iteration exceeds |V”*<}, then the iteration
ends and a new iteration starts with the nodes at this newly
calculated level as synch nodes. QOtherwise, another sub-
iteration starts, using the old synch nodes and using a desired
level rv°-41 bevond that of the synch nodes.

The reason for this rather peculiar sub—-iteration with a

single level is that no node can be seized from one local tree to

another during this sub-iteration. Thus a local tree reported as

'l [

active actually contains at least one node at the new level and a

'.,/.-!"
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path back to the synch node. Thus it contains at least V
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nodes. If the number of active synch nodes exceeds LVO‘EJ, then

e e e e
> a_3 B
oo




at least V9.4 new nodes have been added to the shortest path tree

foud

in the entirs iteration. Note that for the =arlier sub-
iterations, active synch nodes might lose most of the nodes in
their lacal trees when other slower trees seize those nodes away.
When an iteration is extended to cover (v0-41 nodes, then,
if any synch nodes are active at the end of the iteration, the
iteration must add at least VO'4 nodes to the shortest path tree;
if no synch nodes are active (or frozen) at the end of any sub-
iteration, then, of course the algorithm is finished and the
shortest path tree is complete., Thus we have shown that at least
VD'4 nodes are added to the shortest path tree in every iteration
except perhaps the final iteration. Thus the algorithm contains

D'6+1 iterations.

at most V
Observe that each node can receive at most one global
broadcast message per sub-iteration. Thus we can bound the total
number of global broadcast messages by bounding the number of
sub-iterations. Suppose first that there are F sub-iterations
caused by frozen trees. Each such sub—~iteration unfreeces at
least one node af degree greater than VG‘4, and nodes unfrozen in
different sub-iterations belong to different levels of the final
shortest path tree. Thus there are at least F levels in the
final tree containing nodes of degree greater than V0‘4, and we
select one such node in each of these levels. 8Since a ne=ighbor
of a node at level 2 must be at level 2 aor an adjoining level, we

-

see that a node can be a neighbor of at maost 3 selected nodes.

Thus IV » FVD‘4, and thus
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In addition to the sub-iterations caused by frozen treess,
each iteration starts with a sub—iteration of VY*7| desired
levels, then performs the special sub-iteration with one lavel,
and finally, perhaps, performs the final sub-iteration with a
final desired level [v?:%] beyond the synch node. Thus there are
at most three sub-iterations per iteration beyond those caused by

freezing. There are at most VO'6

+]1 iterations, leading to at
most 3(V0‘6+1) + 3V0'6 sub—-iterations altogether. There are no
global broadcast messages on the initial iteration and at most V

for each subsequent sub—-iteration. Thus the total number G o+

global broadcast messages satisfies

5 < e&vl-® 2)

Next consider the local broadcasts and acks. We first show
that a node can join at most LVO‘EJ local trees. If a node first
joins a local tree when the desired final level is LVO‘EJ bevond
the synch level, this result follows since each change of local
tree is accompanied by a decrease in level. If a noda first
Joins a local tree when the desired final level 1s fVQ'4] bevand
the synch level, this result follows since the number of active
synch nodes is at most (VO <),

Consider now what the algorithm does when a node chanqges

levels. During each cycle of the algorithm for growing a local oy

e, a node can be in one of two phases. In the first phase, 1t X

tr

]
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flas not yet received a local hroadcast message, and in the secondg

phase, it has passed on the local broadcast and is waiting +o

3

acknowledgements from each active edge. The variable count is
uged in the algorithm to keep track of how many acknowlesdgemants
ar2 awaited, and a value of zero for count indicates the first
phase. When a local broadcast message arrives at a node from a
different tree, the cycle number is compared with the node’'s
current level, and if smaller, the node changes trees. At this
point, if the count variable is positive, the node returns an
acknowledgement on the old inedge with unused state, indicating
to the old parent node that the node has moved to ancther tree.
Alternatively, if the count is zero, the node sends nothing aver
the old inedge until the next local broadcast message is
received, at which time it returns an ack with unused state.
Thus, precisely one ack is sent for each local broadcast, =ven
when nodes change trees.

In counting the number of local broadcast messages for the
algorithm, we consider two types of terms separately, first the
initial local broadcasts sent by a node after changing level, and
second all the other local broadcasts. Faor the first type, we
note that as a result of the freezing, =ach node of degree more
than Vo'4 sends at most one such message on =2ach outgoing edge,

G.2

and each node of smaller degree sends at most Y massages on

2.4

2ach of its at most V outgoing edges. Thus the total number

af local broadcast messages of this first type, Ly, is at most

.
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In counting the second fype of local broadcast messages, we
laok at the number of such messages that can be rac2ived bv egach
naode. Such messages are only sent on edges for which the
previous local broadcast was acknowledged with an active or
frozen state, so they can only be received on the inedge of a
naode {(or what was the inedge when the previous ack was sent).
While the node belongs to one tree, successive messages on the
inedge contain successively higher cycle numbers except in the
special case where a new sub—iteration is started because of
freezing. In that spécial case, synch nodes frozen at higher
than the minimum level repeat the prevjous cycle number to test
if the local tree is still frozen. Since the nodes that receive
these special local broadcast messages do not receive global
broadcast messages for the given sub-iteration, we can regard
these special local broadcast messages as included in our
previous bound on global broadcasts. Ignoring these special
messages, a node can receive at most [V?*4]-1 local broadcast
messages of this type for each local tree that it joins. Since
there are at most V0'2 such trees, the total number of local

broadcast messages of second tvpe is
La < yl-5 (4)
-
Combining (2), (Z), (4) and recalling that there is ons ack

message for each broadcast message, the total number ot messages

C far the algarithm 1s
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o o= 1avle® 4 oag (S
Tngs 2 = O(E+v1’°) as claimed.

To bound the time T required by the algoritnm, ﬁote first
that T = C since the algorithm is event driven and at least one
message must be sent each time unit. Note also that the term 4E
in (5) came from the initial local broadcasts from frozcen nodes
and their acknowledgemants. Since a node is assumed to send its
local broadc;sts in parallel, and the acknowledgement for each is

returned with no waiting, we see that the term E can be replaced

with V for the time bound, and T = o(wl-9),

E IO N R
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L.
APPENDIX: THF ALGORITHM
local Variahles at nodes
All variables arc integer values except where noted otherwise. The initial values of

all of the variables arc arbitrary, except for the variable level, whosc initial value

is oQ
cycle = current level of the cxploration in the local algorithm,
count = counter of unacknowledged LOCAL_BROADCAST messages.

desired_level =thc last level to be processed in the iteration

initial_level = the first level to be processcd in the sub-iteration.

level = current estimate of the node’s level in shortest path tree.

status = estimate of whcther node has frozen dqsccndcnts, active descen-
dents, or only inactive descendents; only mcaningful for nodes in
local trees. Possible values arc {Active.Froicn,lnactive}.

state(e) = estimate of whether there are frozen descendents, active descen-
dents, or only inactive descendents on the further side of tree
edge e. If e is not a trec edge, state(e)=unused. It is kept for

each incident edge e. Possible values are

{Frozen,Active,Inward,Inactive,Unused}.
synch_level = the level of synch nodes.

synchs_number =
estimate of the number of active synchs which are descendents of

that node; is meaningful only for nodes in the global tree.
Messages scnt during the algorithm

GLOBAL_BROADCAST (s,i,d) =
message by which the root triggers execution of the next sub-

iteration. The message carries the following parameters:

synch_level,initial_level, desired_level.

Eini ™~ S St oiird
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3.

GLOBAM _ACK(¢c.m ) =
message by which a node reports on its incdge about the termina-
tion' of the sub-iteration. ‘The message carrics the following
parameters:cycle, synchs_number,

LOCAI_BROADCAST(c) =
message by which a synch node triggers the local exploration pro-
cess. The parameter ¢ is the cycle number,

LOCAl_ACK(c ,s) =
mcssage by which ,Ia node reports about the termina.ion of the
local ciploration process. The parameters of the message are ¢
(the cycle number) and s. The latter determines the state of the
edge. A

Procedures used in the.algbrithm:

XMIT LOCAL_BR OADCAST =
gencrates LOCA[._LBROADCAST messages.
XMIT GLOBAL_BROADCAST =
generates GLOBAL_BROADCAST messages.
SYNCH_CONTROL =
procedure executed by the synch nodes after termination of each
cycle.'
ROOT_CONTROL =

procedure executed by the root node after termination of each

sub-iteration.

tialization of the algorithm (by the root nodc)

gin '
if the sct of incident cdges is empty then STOP /* the algorithm is complete */
else

hegin
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4. @]

cycle :=1; ’
level :=0;

synch_level :=0;
desired_level := [lf‘“l:
initial_level :=1:
for all cdges ¢, state(e) :=active; el
Call Procedure XMIT_LOCAL_BROAIXCAST:
end

*of the initialization */
yde algorithm
lure XMIT_LOCAL_BROADCAST

»unt :=0;
atus :=inactive;
or cach edge e such that statc(e) =active or frozen
begin
count :=count +l ;
send LOCAL_BROADCAST(cycle) on cdge e;
end
count =0 then ~
begin
status :=inactive;
send LOCAL_ACK(cycle, inactive) on inedge;
end

*of the procedure */

1se to receipt of LOCAL_BROADCAST(p) on edge e :

--------
----------------------
.......................................
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" pClevelthen /*node joins new tree at lower [evel */

begin
if count> 0 and lcvel #00 then send ACK(cycle.unused) on incdge:
/*terminating branch of old tree if ack awaited */
level :=p;
cycle :=p;
inedge :=¢;
state(c):=inward;
synch_level :=0; /7 *initial value, to ensure that level > synch_level */
for all edges e’ = ¢, state(e’) :=active;
if node_dcgree > V%4 then status :=Frozen
clse status :=active;
send LOCAL_ACK(cycle,status) on inedge;
end
tlse /*p >level */
if ¢ =inedge then
if p> levelthen /* broadcast must be propagated outward®/
begin
cycle :=p;
Call Procedure XMIT_LOCAL BROADCAST;
end
clse send LOCAL_ACK(cycle,status) on incdge;
/* in this case p =level; this means that this is the check for frozen nodes
and the current node is in the last layer*/
else /*exinedge®/
begin
send LOCAL_ACK(p,unuscd) on cdge e;
state(e) :=unused;
end

/* this occurs for pRlevel, e#inedge and negatively acknowledges a broadcast

N . -
v a*a -

................................

_________________
.........

........................
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.
vhen old trec is retained */

of the response */
te to receipt of LOCAL_ACK(p.s) on edge e

> =cycle then
sutdated acks satisfy p > cycle: they are ignored */
begin
if s=frozen then status :=frozen;
else if s=active and status#frozen then status ;=active;
state(e) :=s;
count :=count -1;
if count=0then
if level > synch_lcvel then /* the node is not a synch */
send [.OCAL_ACK(cycle, status) on inedge;
else Call Procedure SYNCH_CONTROL
end

*of the response */
ure SYNCH_CONTROL
level=0 and status =frozen then status :=active;

the root ignores freezing on its local iteration */

status =active and cycle € desired_level then

begin
cycle :=cycle +1;

Call Procedure XMIT_LOCAI_BROADCAST o

end S
i
e /*local exploration process has been freezed or terminated */ Ny
.'\:

begin




if status =inactive then synchs_number :=0;
else synchs_number :=1;
if level> 0 then
send GIOBAI_ACK (cycle,synchs_number) on inedge
clse if level=0 then
/*itis the end of the local cycle at the the root */
Call Procedure ROOT_CONTROL;
end

end /*of the procedure */

Procedure XMIT_GLOBAL_BROADCAST
begin
count :=0;
synchs_number :=0;/* lower bound */
cycle :=00;/*upper bound */
for each edge e such that state(e) =active or frozen
begin
count :=count +l ;
send GLOBAL_BROADCAST(synch_level,initial_level, desired_level) on e;
end

end /*of the procedure */

Response to receipt of GLOBAL_BROADCAST (s,i,d) on edge e :
begin
if there exists no incident cdge ¢ with;tatc(e):activc or frozen then
send GILOBAL_ACK(cycle,0) on incdge;
else
begin
synch_level :=s;

initial_level :=i;




......................................................

desired_level :=d;
if level< synch_[evel then Call Procedure XMIT_GLOBAL_BROAIDCAST
else /* level =synch_level */
begin
if initial_level=cycle+l then cycle :=cycle +1;
/ *otherwise test for still frozen local tree */
Call Procedurce XMIT_LOCAL_BROADCAST,
/ * this invokes execution of the local exploration process*/
end
end

end /*of the response */

Response to receipt of GLOBAL_ACK (c,m) on edge e :
begin

synchs_number :=synchs_number +m;

if m>0then

:l IP

begin
cycle :=min {cycle,c}

state(e) :=active:

I 4 ' Y :."-_“_-_"\,* o

end

else state(e) :=inactive;

count :=count - 1;

if count =0 then
if level> 0 then send GLOBAI_ACK(cycle,synchs_number) on inedge : .
else Call Procedure ROOT_CONTROL;

cend /*of the response */

Procedure ROOT_CONTROL ' v
begin ' ' -

if synchs_number =0 then STOP ; / * algorithm is complete; B3 tree is given by




..................
.............................................

inedges pointing in and inactive edges pointing out */ ' L. ——’
clse
begin /* next wb-iteration */
initial_level :=cycle +1;/*starting at the height of lowest tree */
if cycle =desired_level then /* otherwise freezing exists and synch_level

and desired_level need not be changed*/

if synchs_number < W2 and desired_level - synch_level< [l/"-“]then

'
PPN

desired_level :=synch_level + [194];

/*few synchs, make group long */ ) ' o
else ]
R

if desired_level =synch_level +IV°-2I then .'.",;.';
desired_level :=desired_level +1 ; »»1

/* the estimate of active synchs may be too high; test actual

number of active synch nodes by processing just one layer */ ::'_’;'.
else : -
"

begin /* new iteration */

synch_level :=cycle;
desired_level :=synch_level + lyO.ZI;

end

Call Procedure XMIT_GLOBAL_BROADCAST
end

end /*of the Procedure */
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FIGURE 1A BROADCAST TO FIND R NEW LEDEL

FIGURE 1B TESTING NODES AT NEW LEDEL
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FIGURE 1D COORDINATION BEFORE NEHT LAYER
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